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The Roman poet Vergil (70 BC - 19 BC) has some lines in his Georgics which 
run, in translation, as follows:  

 “Or why should I mention the groves that India close to Ocean bears, a 
recess of the farthest circle of the world, where not a single arrow in its 
flight has been able to conquer the topmost loft of a tree?”  

This is intriguing as a way to measure the height of a tree, and leads us to ask how high 
these trees were, and what sort of bow shot these arrows. 

Let us begin with some very basic considerations.  If we neglect air resistance, we 
may determine the trajectory of an arrow from a knowledge of two parameters.  The are 
V, the velocity with which it is released, and α, the angle of discharge.  We may follow 
its flight by taking co-ordinates x horizontally in the direction of the motion and y 
vertically up.  See Figure 1.  The equations of motion may now be easily written down 
from a knowledge of Newton’s laws.  We have: 

˙ ̇ x = 0  and ˙ ̇ y = !g  (1) 

where g is a constant known as the acceleration due to gravity and the double dots 
indicate second derivatives with respect to time.  In SI units, g has the value 9.81, in other 
words about 10. 

Equations (1) may be integrated to give two equations for the velocity 
components of the arrow.  This gives: 

˙ x = V cos!  and ˙ y = V sin! " gt,  (2) 

where t is the time elapsed since the arrow was released.  We may now integrate these 
equations yet again to find 



x = (V cos! )t  and y = (V sin! )t "
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2
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If we now combine the two equations (3), eliminating t, we reach 
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2 . (4)  

This is the equation of the arrow’s trajectory and it is readily seen to be parabolic.1  It 
may be proved (and is fairly obvious in any case) that the maximum height will be 
attained when the arrow is fired vertically, i.e. α=90°.  In that case, it will reach a height 
H given by 

H =
V
2

2g
. (5)  

 (Work this out as an exercise!) 

When it comes to covering the greatest horizontal distance (the range), it turns out 
(again we leave this to the reader as an exercise) that we should choose α=45°, in which 
case we find a range R given by 

R =
V
2

g
. (6)  

Comparing Equations (5) and (6), we find a simple result: 

H =
1

2
R. (7)  

So, as long as air resistance is neglected, we have an easy key to the question we asked.  
Although H is somewhat difficult to measure, R is not.  There is quite an amount of data 
on how far a longbow can shoot.  The English longbow that was so deadly in medieval 
warfare was probably as efficient as a wooden “self-bow” can be.  (A “self-bow” is a 
bow whose body is shaped out of a single homogeneous piece of material and is not 
laminated or reinforced.)  These had ranges in the region 150-200m, and for ease of 
subsequent calculation, we will take 160m as a standard range. 

So Vergil is saying (or is he?) that the trees in the groves of India are over 80m 
high.  This seems wrong.  Although the giant Sequoias of North America can attain such 
heights, mature rainforest trees typically stand only some 40-45m tall.  Why then the 
discrepancy?  Was Vergil indulging in poetic licence?  Or were we wrong to neglect air 
resistance? 

                                     
1 For more on parabolic trajectories, see Function, Vol 16, Part 4, p. 100. 



Well, we’ll come back later to the question of air resistance in the Appendix, but 
the main answer we would suggest to the question posed by the disparity is that Vergil 
was not referring to the military bow (which the Romans did not use), but to some other 
sort of bow.  And if we posit this, we must ask what other kind of bow there was.  Now 
there were bows in military use in Indian antiquity; indeed a passage in the Mahâbhârata 
(a classic Indian epic) has warriors shooting arrows very far into the sky.  But we think it 
was not these military bows that Vergil had in mind. 

Throughout India and Southeast Asia, one can still find descendants of the 
original t2ribes that lived there long before the invasion of the now-dominant cultural 
groups, and many of these tribes used the bow and arrow for purposes of hunting rather 
than of warfare.  In many instances their bows were of a much lighter construction than 
the military bows of (e.g.) the English archers.  They were not intended to be fired over 
great distances, nor high into the sky.  Often the arrows were tipped with poison and they 
were fired from quite short range. 

Indeed, strange as it may seem, our word toxic, meaning “poisonous”, derives 
from an earlier word for “bow”. It reached English via the Latin toxicum, meaning “a 
poison”, but the Latin is in its turn derived from the Greek toxikon pharmakon, which 
meant “arrow poison”.  The word pharmakon was dropped (its modern day derivatives 
mean “pertaining to drugs”, rather than specifically “poison”) and the word toxicon 
retained.  This derived from the Greek toxon, a bow, and this in its turn came from an 
Asiatic souce, the Scythian *taksha-, also meaning “bow”.  Thus the word toxic itself 
refers to a practice that was followed in Asia but in hunting rather than in warfare. 

It is also true that the Greeks saw the bow as of Asian origin and in this they were 
followed by the Romans.  Thus, Vergil was most likely to be referring to the indigenous 
bow of India, and his lines then make quite literal sense.  Stories of India would have 
reached him along with the spices that travelled the same route (and sold in Roman 
markets cheaply, and thus in quantity, as Vergil’s contemporary Horace tells us), and 
here is the way in which Vergil would have learned of the size of the trees of India, as 
measured by the bow and arrow of that same land. 

Appendix 

It is now time to consider the question of air resistance.  Equations (1) to (7) refer 
to an arrow fired in a vacuum, and this may not be accurate enough an approximation for 
our purposes.  After all we would expect the path of the arrow to be affected by the 
breeze!  However, let us suppose that the arrow flies through still air and and that this 
retards its motion.  Precisely the same principle is involved.  Now the interaction is in 
fact quite complex, but the best and most widely used approximation supposes that the air 
resistance supplies a force directed exactly against the travel and of a magnitude 
proportional to the square of the velocity. 

                                     
2 The Scythians were Asain nomads who, between the 7th and 1st centuries BC, settled in what 
is now the Ukraine on the noorthern shores of the Black Sea.  The asterisk indicates an inferred 
word (rather than one still preserved) for Scythian was never a written language. 



This leads to two equations, which the reader should compare with Equations (1). 

˙ ̇ x = !K˙ x ˙ x 
2

+ ˙ y 
2  

˙ y = !g ! K˙ y ˙ x 
2

+ ˙ y 
2  (8)  

where K is a constant still to be determined.3 

The value of K depends on many factors;4  here we shall note that we have 
already chosen g =10 and R=160 in SI units.  This gives V≈40, again in SI units (here ms-

1).  K depends on V and also on a number of other parameters: the density of air, the 
density of the the wood in the arrow, the length of the arrow, the so-called “kinematic 
viscosity” of air, and the approximate width of the arrow.  We may estimate or look up 
these to find values in SI units of respectively 1.225x10-3, 0.5, 1, 1.5x10  -5, 0.01.  The 
second, third and last of these figures are rough approximations; we have an arrow made 
of relatively light wood (about the middle of a large range) about 1m long and about a 
centimetre across.  These figures do not affect the calculation very much; the most 
critical is the density and even that does not matter to any great extent. 

Now an arrow is supposed to be a slender, streamlined body.  It comprises a long 
thin shaft, a head and (at the tail end) a set of fletchings (often feathers or such) that act to 
keep the head pointing in the direction of travel.  These last act by localising the drag of 
the air, so that while the arrow is correctly aligned air-resistance is minimised.  The air-
flow over the arrow is thus that for a well-streamlined body and tables are available.  We 
find a value of K of about 3x10-4 in SI units. 

Now 3x10-4 seems quite small, but we need to say “small compared to what?”, 
and here somne further analysis is called for.  The way to do this analysis is to adopt 
natural units in which V=1 and g=1.  Up till now we have been using SI units, but these 
have no particular connection with the problem in hand.5  We will do much better to 
choose especially apropriate units. 

In these new units, the range is 1, H=0.5 and the equations become: 

˙ x = !" ˙ x ˙ x 2 + ˙ y 2

˙ y = !1! "˙ y ˙ x 
2

+ ˙ y 
2

 (9)  

The value of ε, on the above figures, is 0.05, and this now is a pure number.  It 
has no units and so we can assess it on its merits.  It is the ratio of the viscous drag force 

                                     
3 These same equations were discussed  in connection with the sport of long-jumping) by M. N. 
Brearley in Function, Vol. 3, Part 3. 
4 For an account of the details and for numerical data, see Basic Mechanics of Fluids by H. 
Rouse and J. W. Howe (New York: Wiley, 1953), p. 181. 
5 For a fuller account of the very powerful techniques being employed here, see Function, Vol. 10, 
Part 1. 



on the arrow to the gravitational force acting to accelerate the arrow downwards.  In our 
special units this force is 1, and so the viscous force is 20 times less. 

This much is theory, but it will turn out not to be so very good a theory for 
reasons that will be revealed. 

For the moment, note that Equations (9) aer much more complicated that 
Equations (1).  Indeed, it is not possible, except in very small cases, to solve them 
exactly.  However, when ε is very small, it is possible to show that the effect of all the 
extra items is also very small.  We may also (even when ε is not very small) solve the 
equations numerically on a computer.  This is shown in Figure 2, where we have put 
ε=0.05 and used a numerical technique.  You will see that the effect of air-resistance is 
barely noticeable.  The range has been reduced from 1 (in our special units) to a figure 
that works out to be a little over 0.96. 

But the range of arrows has been tested and they are found to fall much shorter 
than this of their theoretical mark.  In fact they travel only about 70% of the distance that 
other experiments say they should.6  So what has gone wrong? 

To see this, consider a very special case, the one in which the arrow is fired 
vertically.  This case is actually one that can be solved exactly.  We have, throughout the 
motion, x=0 and so only the y equation need concern us.  For the upward travel this 
reduces to7 

˙ ̇ y = !1! "˙ y 
2  (10)  

This equation may be integrated to give 

˙ y 
2
= (1 +

1
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!
, (11)  

and as ˙ y =0 when y=H, we have 

H =
1

2!
1n(1 +! )  (12)  

Now, as the arrow goes up, its three components (head, shaft and fletchings) all 
travel along the same path and so the arrow is well and truly streamlined.  When it 
reaches the top. we have our value of H, and so in a sense we lose interest in what 
happens next.  However, it is instructive to think, in a general way, about what does 
occur.  The arrow must now come back to earth, and given a reasonable distance of 
travel, it will eventually return head downwards.  In other words it turns around in a 
tumbling motion; and while this is going on, the arrow will be anything but streamlined!  
The value of ε will be greatly increased. 

                                     
6 See New Scientist, 5 June 1993, pp. 24-25. 
7 on the way down, we must write ˙ ̇ y = !1+ "˙ y 

2 .  Can you see why? 



Now these same considerations apply to the more general case as well, although 
the “tumbling” is distributed more evenly over the trajectory as a whole.  The effective 
value of ε will greatly exceed the theoretical value, and indeed the value of ε will alter as 
the motion proceeds.  However, if we take an average value and solve Equations (9) 
numerically, we find the observed reduction in range for a value of ε of about 0.6.  See 
Figure 3.  However, the value of H obtained from Equation (12) should use the value 
0.05 derived earlier. 

From Equation (12) and the value ε=0.05, we find H=0.49, whereas Equation (5) 
(in our special units, remember) gives 0.5.  For R, however, we have the value 0.7.  This 
actually strengthens the argument against the military bow.  For tge height reached is no 
longer merely half the value of the range, but rather 0.49/0.7, i.e. 0.7, and so now (going 
back to SI units) we would have Vergil claiming that the trees were well over 100m high!  
This is an even greater unlikelihood than the one we discussed earlier, and so strengthens 
the case for the interpretation given here. 

Further Reading 

Equations (9) have been widely studied, but not always in an accessible form.  
During World War I, the mathematician J. E. :Littlewood8 was assigned by the British 
military to study these equations, which are important in gunnery.  A few of his results 
appeared in his book A Mathematician’s Miscellany and other bits and pieces were 
published elsewhere.  In 1971, Function’s British counterpart, Mathematical Spectrum, 
printed a two-part account of his work.  (It is rather unlikely that very many of 
Spectrum’s target audience actually read or followed Littlewood’s account, which is very 
heavy going.  However, the editors must have published it for its historical importance.)  
A more accessible popular article is the summary “Ballistics and Projectiles” in 
Companion Encyclopedia of the History and Philosopy of the Mathematical Sciences; see 
Vol. 2, p. 1069.  This gives a lot of the history and many references, but is rather terse 
when it comes to technical detail. 

A problem that sems to be unsolved for the present is that the air-resisted 
trajectories of Figures 2 and 3 (and very many other cases besides) can be approximated 
to wonderfully high orders of accuracy by cubic curves.  We are unaware of any 
theoretical reason why this should be so. 

Figures 

Figure 1.  [graph] The standard parabolic trajectory; the path is followed by an 
arrow in a vacuum.  The case drawn is for α=60°. 

Figure 2.  [graph] The path of an arrow in a idealised case but with air resistance.  
The parameter values are ε=0.05 and α=45°.  The points shown are those calculated by 
the numerical programme solving the equations; the curve is interpolated between these. 

                                     
8 Who appeared briefly in Function, Vol. 19, Part 3, pp. 83-85. 



Distance 

Figure 3.  [graph] A more realistic path.  The parameter values for this case are 
ε=0.06 and α=46°.  Again the points are calculated first and then the curve interpolated. 


